If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+84H+100
We move all terms to the left:
-(-16H^2+84H+100)=0
We get rid of parentheses
16H^2-84H-100=0
a = 16; b = -84; c = -100;
Δ = b2-4ac
Δ = -842-4·16·(-100)
Δ = 13456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13456}=116$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-116}{2*16}=\frac{-32}{32} =-1 $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+116}{2*16}=\frac{200}{32} =6+1/4 $
| 2g–0.4=1+1.8 | | X/1/8(8x+15)=24 | | x–19=36 | | 15p+3p*13p+3p*6p=14 | | 5x+5=29-x | | 4x+43+6x+77=180 | | 14u-12u-u+5u=18 | | 2(x+1)-3(x-1)=12 | | 24=2c/7+10 | | /2x-5=3x+7 | | -k=-2k-5 | | 18=-6x=162 | | 7d+2=5d3 | | 2(3x-4)+x1=-16 | | 263=69-w | | 2x²-5=3x | | 63=7(j-82) | | -5+7x=6(6x+4) | | 3x=-3+2 | | 13c-11c=2 | | 6^4y=3 | | 130-3x=0+5x | | (84-x)=100 | | 11j-9j=4 | | 3x+3+6=15 | | -3-1(2-x)=5x+4 | | 4x=3x+-2 | | 1000(9x-10)=50(704+100x | | 855=17(x+5) | | 9 − 2x = −7x + 34 | | r+19=50 | | 9c+4c-2c-7c+3c=7 |